Computational Techniques for Photon Transport in Ice Predrag Miočinović UC Berkeley Peter Niessen Vrÿe Universiteit, Brussel

> International Workshop on UHE Neutrino Telescope Chiba University July 30, 2003

Predrag Miočinović

Motivation

Photon transport can not be solved analytically in all cases
Inhomogeneity of transport medium further complicates the problem

 $P_{\gamma}(\mathbf{r},t)?$

Implementation

Monte Carlo generation of photon flux tables
Table parametrization for simulation and reconstruction

Predrag Miočinović

Predrag Miočinović

Minimal scattering regime N_{scat}~1: treat delayed photons as a perturbation

 Majority of flux is "undelayed"
 P(r,0)∝exp(-d/λ_a)

 Simple empirical power law-like fit to delayed flux P(r,t)∝P(r,0)·t^α

Predrag Miočinović

Large scattering regime N_{scat} N_{diffusive}: described by 3D random walk function*

Input parameters: $\lambda_{\rm e} = 2.645 \,\mathrm{m}$ $\lambda_a = 120 \text{ m}$

*B. Price and L. Bergström Appl. Opt. 36, 4181 (1997)

UHE Neutrino Telescope Workshop, Chiba University, 29-30 July, 2003

 χ^2/ndf

P1

68.14

0.2023

0.2735E-02

Predrag Miočinović

Intermediate scattering regime 1<N_{scat}<<N_{diffusive} no closed form solution

\Rightarrow calculate fluxes numerically*

*see A. Karle, in proceeding of Simulation and Analysis Methods for Large Neutrino Telescopes workshop, July 1998, Zeuthen, Germany, p. 174

Predrag Miočinović

Optical properties between photon source and detection point can change!

Variation in ice transparency in AMANDA

Predrag Miočinović UHE N

Photonics software package numerical solution to flux calculation problem

ray-tracing approach to photon transport

- handles varying optical properties
- highly flexible geometry and runtime configuration
- very fast
- easily extendable

Multidimensional tables used to keep results

source location & orientation (2D)

photon orientation & travel time (3D)⁻

receiver location (3D)

Predrag Miočinović

Absorption treated as photon survival probability - speeds up table evaluation

-allows treatement of varying optical properties

Scattering treated by Henyey-Greenstein approximation to Mie scattering theory

Predrag Miočinović

ight source

flux calculated in volume unit-cells

Predrag Miočinović

execution speed ~ $10^6 \gamma$ / hour / GHz

Predrag Miočinović

But....

Full production table set size is ≥ 1 GB

\Rightarrow need to parametrize the tables

Predrag Miočinović

Attractive properties of Neural Networks • model free fitter

 \rightarrow superposition of weighted sigmod functions

interpolation ability

NN configuration:

- Fully connected Multilayer Perceptron Network
- timing delay tables 6x10x10x10x1
- Iluence tables 5x60x60x1 or 5x10x10x10x1

Fluence table fitting not finalized

Predrag Miočinović

"hybrid" model for initial evaluation

table lookup for fluenceNN fit to timing delay tables

simulated hit-time distribution agree

Predrag Miočinović

NN performance in detector simulation

Predrag Miočinović

Summary & Outlook

- MC table generation tested and running well
 NN parametrization of flux timing tables is adequate
- Fine tune parametrization of fluence tables
 proceed with full scale implementation into AMANDA simulation chain